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The quantum retrodiction for open systems which obey the quantum Markovian dynam-
ics is investigated by means of non-equilibrium thermo Field dynamics (NETFD) which
can easily derive the retrodictive time-evolution generators. NETFD can formulate the
quantum retrodiction for open systems in the same way as that for closed systems.
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1. INTRODUCTION

In quantum mechanics, a system which is prepared in a quantum state at
initial time tp evolves with time, and then quantum measurement is performed on
the system at later time tm (tm > tp). Quantum mechanics predicts the measure-
ment outcome with the probability (Helstrom, 1976), which is referred to as the
quantum prediction. Once the measurement outcome is obtained, using the Bayes
theorem, one can retrodict the quantum state in which the system was prepared
at the initial time tp. This is referred to as the quantum retrodiction. Although
the quantum retrodiction is quite different from the quantum prediction, it can be
formulated in the similar way to the quantum prediction (Barnett et al., 2000a,b,c,
2001; Jedrkiewicz et al., 2004; Pegg et al., 2002a,b; Pegg and Jeffers, 2005; Pegg,
2006). In the quantum retrodiction, the system which is prepared in a quantum
state at the measurement time tm evolves backward with time and quantum
measurement is performed on the system at the time tp. The probability that the
quantum measurement carried out at the time tp yields the outcome is equal to that
obtained by the quantum prediction in combined with the Bayes theorem (Barnett
et al., 2000b). The quantum retrodiction is useful for investigating quantum
communication systems (Barnett et al., 2000a; Jedrkiewicz et al., 2004), where a
receiver must infer which quantum state a sender prepared. For a closed system,

1 Advanced Research Laboratory, Hitachi, Ltd., 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan.
2 CREST, Japan Science and Technology Agency, 1-1-9 Yaesu, Chuo-ku, Tokyo 103-0028, Japan;

e-mail: masashi@activemail.jp

189
0020-7748/07/0100-0189/0 C© 2006 Springer Science+Business Media, Inc.



190 Ban

the time-evolution of which is unitary, the retrodictive time-evolution can easily be
obtained. The retrodictive time evolution of open systems was obtained by Pegg
and Barnett when the predictive time evolution obeys the quantum Markovian
dynamics (Barnett et al., 2001; Pegg et al., 2002b). This paper investigates
the retrodictive quantum dynamics for open systems within the framework of
non-equilibrium thermo field dynamics (NETFD) (Arimitsu and Umezawa, 1985,
1987a,b; Umezawa et al., 1982; Umezawa, 1993). Using NETFD, one can formu-
late the quantum retrodiction of open systems in the same way as that for closed
systems and thus one can easily obtain the retrodictive time-evolution generator.

2. NON-EQUILIBRIUM THERMO FIELD DYNAMICS

A quantum state is described by a density matrix ρ defined on a Hilbert space
H , which satisfies ρ > 0 and Trρ = 1. In NETFD, a quantum state is given by a
state vector which belongs to an tensor product Hilbert H ⊗ H̃ , where H̃ is an
auxiliary Hilbert space with the same dimension as that of H . Any operator A

defined on H is related with the corresponding operator Ã defined on H̃ by the
tilde conjugation which satisfies (Umezawa et al., 1982; Umezawa, 1993)

(A1A2)̃ = Ã1Ã2, (1)

(c1A1 + c2A2)̃ = c∗
1Ã1 + c∗

2Ã2, (2)

(A†)̃ = Ã†, (3)

(Ã)̃ = σAA, (4)

where ck is a c-number and σA is a phase factor with σA = 1 for a bosonic operator
A. For any operator A defined on H , there exists a unique vector |A〉〉 belonging
to H ⊗ H̃ , and for any vector |A〉〉, there is a unique operator A defined on H .
We denote such correspondence as A ↔ |A〉〉. When A ↔ |A〉〉 and B ↔ |B〉〉,
one can obtain the correspondence (Arimitsu and Umezawa, 1987a)

AB ↔ |AB〉〉 = A|B〉〉 = B̃†|A〉〉. (5)

The scalar product of vectors belonging to the Hilbert space H ⊗ H̃ is
given by the Hilbert-Schmidt product, that is, 〈〈A|B〉〉 = Tr(A†B). In NETFD,
the average value of an observable A, including positive operator-valued measure
which describes quantum measurement, in a quantum state ρ can be expressed as
(Arimitsu and Umezawa, 1985, 1987a; Umezawa, 1993)

〈A〉 = Tr[Aρ] = Tr[ρ1−αAρα] = 〈〈ρ1−α|A|ρα〉〉, (6)

with 0 ≤ α ≤ 1. A vector |ρα〉〉 corresponding to a quantum state is invariant
under the tilde conjugation, where the tilde conjugation of any vector is defined
by |�̃〉〉 = ∑

m,n c∗
nm|m, ñ〉〉 for |�〉〉 = ∑

m,n cmn|m, ñ〉〉. The tilde invariance of
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a state vector is equivalent to the Hermiticy of a density matrix. In NETFD with
α = 1, which is called the α = 1 representation of NETFD, the average value of
an observable A is given by 〈A〉 = 〈〈1|A|ρ〉〉 while in the α = 0 representation
of NETFD, it is given by 〈A〉 = 〈〈ρ|A|1〉〉, where |1〉〉 is a vector corresponding
to an identity operator. NETFD with α = 1/2 is called the unitary representation
(Umezawa, 1993).

When an open system obeys the quantum Markovian dynamics, the time-
evolution of the quantum state ρ(t) is determined by the quantum master equation
of the Lindblad form,

∂

∂t
ρ(t) = − i

h
[H, ρ(t)] + 1

h

∑

µ

[
2Aµρ(t)A†

µ − A†
µAµρ(t) − ρ(t)A†

µAµ

]
, (7)

where H is the Hamiltonian of the system and Aµ is some operator of the system. In
the α = 1 representation of NETFD, the state vector |ρ(t)〉〉 obeys the Schrödinger-
like equation,

∂

∂t
|ρ(t)〉〉 = − i

h
Ĥ |ρ(t)〉〉, (8)

with

Ĥ = H − H̃ + i
∑

µ

(2AµÃµ − A†
µAµ − Ã†

µÃµ), (9)

where these equations are derived from Eq. (7) by means of the relation (5).
The time-evolution generator Ĥ satisfies 〈〈1|Ĥ = 0 which is equivalent to the
conservation law of probability. On the other hand, in the α = 0 representation of
NETFD, the time-evolution of the state vector 〈〈ρ(t)| is determined by

∂

∂t
〈〈ρ(t)| = i

h
〈〈ρ(t)|Ĥ †

, (10)

with

Ĥ
† = H − H̃ − i

∑

µ

(2A†
µÃ†

µ − A†
µAµ − Ã†

µÃµ), (11)

where the equality Ĥ
†|1〉〉 = 0 ensures the probability conservation. It is noted

that although 〈〈1|Ĥ = 0 and Ĥ
†|1〉〉 = 0 always holds (Arimitsu and Umezawa,

1987a), Ĥ |1〉〉 = 0 and 〈〈1|Ĥ † = 0 do not unless [Aµ,A†
µ] = 0. Furthermore, it

is obvious that Ĥ
† �= Ĥ . In NETFD, the equation of motion for a state vector of

an open system has the same form as that of a closed system. The difference is in
the form of the time-evolution generator. For a closed system with a Hamiltonian
H , the time evolution generator is given by Ĥ = H − H̃ and there is no cross

terms of operators with and without the tilde and the equality Ĥ = Ĥ
†

holds.
On the other hands, for an open system, the time evolution generator Ĥ includes
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the cross terms which is essential for describing an irreversible time-evolution

and in general, Ĥ �= Ĥ
†
. Since a state vector is always invariant under the tilde

conjugation, the time-evolution generator Ĥ must satisfy (iĤ )̃ = iĤ (Arimitsu
and Umezawa, 1987a). Then the time-evolution generator Ĥ can be written in the
form of Ĥ = Ĥ 1 + iĤ 2 with (Ĥ 1)̃ = −Ĥ 1 and (Ĥ 2)̃ = Ĥ 2. When an open
system obeys the quantum Markovian dynamics, one finds that Ĥ 1 = H − H̃

and Ĥ 2 = ∑
µ(2AµÃµ − A†

µAµ − Ã†
µÃµ).

3. QUANTUM PREDICTION AND RETRODICTION

The probabilistic structure of quantum mechanics can be formulated in terms
of two sets of positive operators. One is the set of preparation device (PD) operators
{�k} and the other is the set of measurement device (MD) operators {�j } (Pegg
et al., 2002a,b). The joint probability P (j, k) that a system is prepared in the k-th
quantum state and quantum measurement performed on the system yields the j -th
outcome is given by

P (j, k) = Tr(�j�k)

Tr(��)
, (12)

where � = ∑
k �k and � = ∑

j �j . Here the time-evolution of the system be-
tween the preparation and measurement has been ignored for the sake of simplicity.
The predictive quantum state is defined by (Pegg et al., 2002a,b)

ρ
pred
k = �k

Tr�k

, (13)

and the conditional probability P (j |k) that the j -th measurement outcome is
obtained when the system is prepared in the quantum state ρ̂

pred
k is given by

P (j |k) = Tr
(
�jρ

pred
k

)

Tr
(
�ρ

pred
k

) . (14)

From the causality, the MD operators must satisfy the relation � = G · 1,
where G is a positive constant (Pegg, 2006). In this case, the operator �k =
(1/G)�k becomes the positive operator-valued measure describing the quantum
measurement. Then one obtains the conventional expression of the conditional
probability, that is, P (j |k) = Tr(�jρ

pred
k ), and thus one finds that ρ

pred
k is the

usual density matrix which represents the quantum state of the system. On the
other hand, the retrodictive quantum state of the system is defined by (Pegg et al.,
2002a,b)

ρretr
j = �j

Tr�j

, (15)
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in term of which the posterior probability Q(k|j ) that the system was prepared in
the k-th quantum state when the quantum measurement yields the j -th outcome
is given by

Q(k|j ) = Tr
(
�kρ

retr
j

)

Tr
(
�ρretr

j

) . (16)

The probabilities P (j |k) and Q(k|j ) are related with each other by the Bayes
relation P (j, k) = P (j |k)P (k) = Q(k|j )Q(j ) (Barnett et al., 2000b), where
P (k) = ∑

j P (j, k) and Q(j ) = ∑
k P (j, k).

In the α = 1 representation of NETFD, the probabilistic structure of quantum
mechanics is reformulated as follows. Let |�k〉〉 and |�j 〉〉 be state vectors which
correspond to the PD operator �k and the MD operator �j . Then the joint prob-
ability P (j, k) that the system is prepared in the k-th quantum state and quantum
measurement yields the j -th outcome is given by

P (j, k) = 〈〈1|�j |�k〉〉
〈〈1|�|�〉〉 = 〈〈1|�k|�j 〉〉

〈〈1|�|�〉〉 , (17)

where |�〉〉 = ∑
j |�j 〉〉 and |�〉〉 = ∑

k |�k〉〉. Furthermore the predictive and
retrodictive quantum states in NETFD can be represented by

|ρpred
k 〉〉 = |�k〉〉

〈〈1|�k〉〉 , (18)

|ρretr
j 〉〉 = |�j 〉〉

〈〈1|�j 〉〉 , (19)

in terms of which the conditional probability P (j |k) and the posterior probability
Q(k|j ) are given by

P (j |k) = 〈〈1|�j |ρpred
k 〉〉

〈〈1|�|ρpred
k 〉〉

, (20)

Q(k|j ) = 〈〈1|�k|ρretor
j 〉〉

〈〈1|�|ρretor
j 〉〉 . (21)

Note that Eq. (20) becomes P (j |k) = 〈〈1|�j |ρpred
k 〉〉 due to the causality.

4. RETRODICTIVE TIME-EVOLUTION IN NETFD

Since the time-evolution of an open system is given by the same form as that
of a closed system in NETFD, the retrodictive time-evolution of an open system
can easily be obtained. Let Ĥ be the time-evolution generator for a predictive
quantum state in the α = 1 representation of NETFD. When an open system is
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initially prepared in a quantum state |ρpred
k 〉〉 at time tp, the quantum state just

before the measurement performed at time tm is given by

|ρpred
k (tm)〉〉 = e−(i/h)

ˆH (tm−tp)|ρpred
k 〉〉 = |�k(tm)〉〉

〈〈1|�k(tm)〉〉 , (22)

with

|�k(tm)〉〉 = e−(i/h)
ˆH (tm−tp)|�k〉〉. (23)

In Eq. (22), the equality 〈〈1|Ĥ = 0 has been used. Then the conditional
probability P (j |k) that the measurement performed on the system at later time tm
yields the j -th outcome is given by

P (j |k) = 〈〈1|�j |ρpred
k (tm)〉〉

〈〈1|�|ρpred
k (tm)〉〉

, (24)

or equivalently P (j |k) = 〈〈1|�j |ρpred
k (tm)〉〉. Furthermore the joint probability

P (j, k) that the system is prepared in the k-th quantum state at the time tp and the
k-th measurement outcome is obtained at the time tm is expressed as

P (j, k) = 〈〈1|�j |�k(tm)〉〉
〈〈1|�|�(tm)〉〉 = 〈〈1|�je

−(i/h)
ˆH (tm−tp)|�k〉〉

〈〈1|�e−(i/h)
ˆH (tm−tp)|�〉〉

(25)

which can be rewritten in the following form:

P (j, k) = 〈〈1|�k|�j (tp)〉〉
〈〈1|�|�(tp)〉〉 , (26)

with

|�j (tp)〉〉 = e(i/h)
ˆH

†
(tm−tp)|�j 〉〉. (27)

This implies that the retrodictive state |ρretr
j (tp)〉〉 at the time tp just after the

preparation is given by

|ρretr
j (tp)〉〉 = |�j (tp)〉〉

〈〈1|�j (tp)〉〉 . (28)

Here 〈〈1|�j (tp)〉〉 �= 〈〈1|�j 〉〉 in general. The posterior probability Q(k|j )
that the system was in the k-th quantum state once the j -th measurement outcome
is obtained can be expressed as

Q(k|j ) = 〈〈1|�k|ρretr
j (tp)〉〉

〈〈1|�|ρretr
j (tp)〉〉 . (29)

We now consider the equations of motion for the PD vector |�k〉〉, the pre-
dictive state vector |ρpred

k 〉〉, the MD vector |�j 〉〉 and the retrodictive state vector
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|ρretr
j 〉〉. It is obvious from Eqs. (22) and (23) that the PD vector |�k(t)〉〉 and the

predictive state vector |ρpred
k (t)〉〉 obeys

∂

∂t
|�k(t)〉〉 = − i

h
Ĥ |�k(t)〉〉, (30)

∂

∂t
|ρpred

k (t)〉〉 = − i

h
Ĥ |ρpred

k (t)〉〉, (31)

where the initial conditions are given at the time tp. Thus the time-evolution
generators of the PD vector and predictive state vector are equal to that in the
α = 1 representation of NETFD. On the other hand, from Eq. (27), the MD vector
|�k(t)〉〉 is subject to

∂

∂t
|�j (t)〉〉 = − i

h
Ĥ

†|�j (t)〉〉, (32)

where the “initial” condition is given at the time tm. This result implies that the
time-evolution generator of the MD vector is identical with that in the α = 0
representation of NETFD. The equation of motion for the retrodictive state vector
|ρretr

j (t)〉〉 is somewhat complicated due to the normalization factor,

∂

∂t
|ρretr

j (t)〉〉 = − i

h
	Ĥ

retr
j (t)|ρretr

j (t)〉〉, (33)

with

	Ĥ
retr
j (t) = Ĥ

† − 〈〈1|Ĥ †|ρretr
j (t)〉〉. (34)

The time flows backward from the future to the past in Eqs. (32) and (33). Note
that one can formally rewrite Eq. (31) in the same form as Eq. (33),

∂

∂t
|ρpred

k (t)〉〉 = − i

h
	Ĥ

pred
k (t)|ρpred

k (t)〉〉, (35)

with

	Ĥ
pred
k (t) = Ĥ − 〈〈1|Ĥ |ρpred

j (t)〉〉 = Ĥ . (36)

The time-evolution of the predictive state is determined by the time-evolution
generator of the α = 1 representation of NETFD. On the other hand, although
when the α = 1 representation of NETFD is applied, the time-evolution of the
retrodictive state is determined by the time-evolution generator of the α = 0
representation. This result may be related with the causality in NETFD. The
α = 1 representation of NETFD provides the average values of the time-ordered
products of operators while in the α = 0 representation, the average value of the
anti-time-ordered products are obtained (Umezawa, 1993). When the dynamics
of the system is subject to the quantum Markovian process, the predictive time-
evolution generator Ĥ is given by Eq. (9). Then the corresponding retrodictive
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time-evolution generator Ĥ
†

is given by Eq. (11) and 	Ĥ
retr
j (t) is calculated to

be

	Ĥ
retr
j (t) = Ĥ

† + 2i
∑

µ

〈〈
1
∣
∣
[
Aµ,A†

µ

]∣
∣ρretr

j (t)
〉〉
, (37)

which is equivalent to that obtained directly from the Markovian master equation
of the Lindblad form in the conventional formalism (Pegg et al., 2002b).

Since the equality Ĥ
†|1〉〉 = 0 always holds, the equation of motion for the

MD vector |�j 〉〉 has a stationary solution |�j 〉〉 = |1〉〉. If the system is described
by N dimensional Hilbert state, the retrodictive quantum state in the time region
with tm − tp → ∞ is given by |ρretr

j (tp)〉〉 = (1/N )|1〉〉 which represents the com-

pletely random state. It is easy to check that 	Ĥ
retr
j (t)|ρretr

j (t)〉〉||ρretr
j (t)〉〉→(1/N)|1〉〉 =

0. This result means the fact that the information on the measurement outcome ob-
tained at the time tm is lost completely during the retrodictive time evolution. It is

important to note that Ĥ
†|1〉〉 = 0 is equivalent to 〈〈1|Ĥ = 0 which ensures the

probability conservation during the predictive time-evolution. Hence missing the
information on the measurement outcome during the retrodictive time-evolution
results from the probability conservation during the predictive time-evolution.
The probability is conserved during the retrodictive time-evolution since equality

〈〈1|	Ĥ
retr
j (t)|ρretr

j (t)〉〉 = 0 alway holds.

5. CONCLUDING REMARKS

In this paper, the retrodictive time-evolution of an open system which obeys
the quantum Markovian process has been formulated by means of NETFD. Since
NETFD can treat closed and open systems in the same way, the retrodictive
time-evolution generator can easily be obtained. It is important to note that the
derivation of the retrodictive time-evolution generator is restricted to the quantum
Markovian dynamics. The derivation of the retrodictive time-evolution generator
for the quantum non-Markovian dynamics is difficult. Such time-evolution gen-
erator can, however, be derived by means of the time-convolutionless projection
operator method (Shibata and Arimitsu, 1980; Arimitsu, 1982; Uchiyama and
Shibata, 1999). This will be published elsewhere.
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